Tropomyosin distinguishes between the two actin-binding sites of villin and affects actin-binding properties of other brush border proteins

نویسندگان

  • D R Burgess
  • K O Broschat
  • J M Hayden
چکیده

The intestinal epithelial cell brush border exhibits distinct localizations of the actin-binding protein components of its cytoskeleton. The protein interactions that dictate this subcellular organization are as yet unknown. We report here that tropomyosin, which is found in the rootlet but not in the microvillus core, can bind to and saturate the actin of isolated cores, and can cause the dissociation of up to 30% of the villin and fimbrin from the cores but does not affect actin binding by 110-kD calmodulin. Low speed sedimentation assays and ultrastructural analysis show that the tropomyosin-containing cores remain bundled, and that 110-kD calmodulin remains attached to the core filaments. The effects of tropomyosin on the binding and bundling activities of villin were subsequently determined by sedimentation assays. Villin binds to F-actin with an apparent Ka of 7 X 10(5) M-1 at approximate physiological ionic strength, which is an order of magnitude lower than that of intestinal epithelial cell tropomyosin. Binding of villin to F-actin presaturated with tropomyosin is inhibited relative to that to pure F-actin, although full saturation can be obtained by increasing the villin concentration. Villin also inhibits the binding of tropomyosin to F-actin, although not to the same extent. However, tropomyosin strongly inhibits bundling of F-actin by villin, and bundling is not recovered even at a saturating villin concentration. Since villin has two actin-binding sites, both of which are required for bundling, the fact that tropomyosin inhibits bundling of F-actin under conditions where actin is fully saturated with villin strongly suggests that tropomyosin's and one of villin's F-actin-binding sites overlap. These results indicate that villin and tropomyosin could compete for actin filaments in the intestinal epithelial cell, and that tropomyosin may play a major role in the regulation of microfilament structure in these and other cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropomyosin Distinguishes between the Two Actin-binding Sites of ViUin and Affects Actin-binding Properties of Other Brush Border Proteins

The intestinal epithelial cell brush border exhibits distinct localizations of the actin-binding protein components of its cytoskeleton. The protein interactions that dictate this subcellular organization are as yet unknown. We report here that tropomyosin, which is found in the rootlet but not in the microvillus core, can bind to and saturate the actin of isolated cores, and can cause the diss...

متن کامل

Sequence of human villin: a large duplicated domain homologous with other actin-severing proteins and a unique small carboxy-terminal domain related to villin specificity

Villin is a calcium-regulated actin-binding protein that caps, severs, and bundles actin filaments in vitro. This 92,500-D protein is a major constituent of the actin bundles within the microvilli of the brush border surface of intestinal and kidney proximal tubule cells. Villin is a very early marker of cells involved in absorption and its expression is highly increased during intestinal cell ...

متن کامل

Microinjection of villin into cultured cells induces rapid and long- lasting changes in cell morphology but does not inhibit cytokinesis, cell motility, or membrane ruffling

Villin, a Ca2(+)-regulated F-actin bundling, severing, capping, and nucleating protein, is a major component of the core of microvilli of the intestinal brush border. Its actin binding properties, tissue specificity, and expression during cell differentiation suggest that it might be involved in the organization of the microfilaments in intestinal epithelial cells to form a brush border. Recent...

متن کامل

Redistribution of villin to proximal tubule basolateral membranes after ischemia and reperfusion.

After ischemia and reperfusion, severe alterations in the cytoskeletal organization of renal tubular epithelial cells have been reported. These effects, accompanied by a modification in the polarized distribution of some membrane transport proteins, are especially evident in the proximal tubule. In normal proximal tubule cells, actin is concentrated in apical brush border microvilli, along with...

متن کامل

Cytoskeletal protein and mRNA accumulation during brush border formation in adult chicken enterocytes.

We have explored the development of the brush border in adult chicken enterocytes by analyzing the cytoskeletal protein and mRNA levels as enterocytes arise from crypt stem cells and differentiate as they move toward the villus. At the base of the crypt, a small population of cells contain a rudimentary terminal web and a few short microvilli with long rootlets. These microvilli appear to arise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 104  شماره 

صفحات  -

تاریخ انتشار 1987